Program history and military-industrial complexF22 program is a prime example of bad management – large developmental and production costs meant reduction in number of planes procured; that, in turn, increased per-aircraft cost even more, and led to further cuts. Result was that original number of airframes was cut from 750 to 680 during H. W. Bush' administration. In 1993-94, Clinton Administration cut number further, to 442 planes; 1997 Quadrennial Defense Review cut number to 339 aircraft – about three wings worth, althought it did leave option of buying two more wings if air-to-ground capability was introduced into F22. In 2002, there was another attempt to cut numbers further, but it did not pass, but in 2003, number was cut to 279, and in 2005 to 178 aircraft. Later, four aircraft were added to procurement plan.
In 1990s, Air Force cancelled program to develop multi-role replacement for F16, and, along with the navy, begun a new effort – Joint Advanced Strike Technology program, or JAST, which led to development of F35 Joint Strike Fighter. Marine Corps also joined in.
In December 2010, Program Budget Directive, pushed by Rumsfeld, slashed 10 billion USD from F22 procurement, leaving it at anemic levels of only 183 planes, number later raised to 187.
Here is how number of F22s to be procured changed over time:
1986 – 750 F22s
1991 – 648
1993 – 442
1997 – 339
2003 – 279
2005 - 178
Lt. Gen. Daniel Darnell estimated that, by 2024, USAF will be short of its 2250 fighters requirement by some 800 aircraft (it must be noted that US policy had its military ready for two major theater wars – however, it is unlikely that either Russia or India will join China in the even of US-China far; actually, opposite is far more likely, especially in case of India). Problem is even worse since air superiority is crucial element of all US military plans.
Major problem was abandonment of competetive prototyping policy introduced with F16 program, where designers would build full-technology, combat-capable prototypes based on skeleton requirements, test them, redesign and fix what needed, and then test them again, meaning that bugs were being discovered during production; same mistake is being repeated with F35. Prototype was tested, but it had little in common to finished plane – it did not have stealth skin, and was lighter than finished F22. Even shape was very different, and there was no demonstrative dogfight – in Pentagon, it was called "paint job with shape of F22". Flyoff between YF-22 and YF-23 was in 1986, and after YF-22 was selected, it went right back to the drawing table, and was heavily redesigned – F22 has nothing except shape in common with YF-22. Also, low-level production made it difficult to cancel outright, problem increased by fact that main goal of F22 program was to get money to contractors. Production also started in 1997, despite the fact that, by then, less than 4% of testing had been complete.
Capabilities also changed – in 2002, limited ground attack capacity was added, earning it designation of F/A-22, which was in 2005 changed to F-22A.
Whereas F15 entered service 5 years after development started, F22 waited full 24 years. One of reasons for that is permanent war economy in the US, which caused a merger of previously separate government and corporate managements. That has caused a proliferation of useless projects, whose only purpose is to make money for contractors, sub-contractors and sub-sub-contractors.
However, military-industrial complex does have support in United States due to number of jobs it creates. F22 project itself was divided among 1 150 subcontractors in 43 states and Puerto Rico, employing 15 000 people, for precisely that reason - to make it difficult to get rid of. When accounted for local economies, 160 000 jobs were put at risk. Same trick was tried with Nike-Zeus missile defense program, and failed.
From 1990 to 2000, US Government spent 2 956 billion USD on the Department of Defense. In 2002, 35 million people do not have secure supply of food due to living in poverty, 1,4 million more than in 2001, and 18 000 out of over 40 million people without health insurance died due to lack of treatment. Two thirds of all public schools have troublesome environmental conditions.
Cost of Vietnam war was 676 billion USD. Current US military budget draws 10 % of US GNP. Actually, in 1952 – which saw highest level of defense spending during Cold War – US defense budget was 589 billion in FY2008 USD. In 2008, it was 670 billion USD. And these figures are based on Pentagon's own data, and therefore lowered, as you will see below. CIAs 2007 World Factbook estimated 400 billion USD defense spending for rest of the world combined. In 2008, China and Russia had defense budgets of 81 and 21 billion USD, respectively. In 2010, number was 178 billion USD for China; however, as with US 500-billion-USD number, both numbers for 2008 included "base" spending only.
Real US defense spending in 2010:
534 billion "base" spending
6 billion "mandatory" appropriations (mostly personell-related expenses)
130 billion for financing war in Iraq and Afghanistan
22 billion for nuclear weapons (to Department of Energy)
106 billion to Department of Veterans
43 billion to Department of Homeland Security
49 billion for UN peacekeeping operations, aid to Iraq and Afghanistan and gifts to Israel plus other costs of State Department
28 billion to Department of Treasury, to help pay for military retirement
57 billion to pay for Pentagon's share of interest on debt
Additions to the flow of capital funds from the Pentagon are welcomed. One example is the pulley puller for the F-16 fighter – essentially a steel bar two inches in length with three screws tapped in. In 1984, this small item was sold to the DoD by General Dynamics for $8,832 each. If the same equipment were custom ordered in a private shop it would cost only $25.
It is typical that weapons cost three times or more than initial cost estimates. F22s flyaway cost has increased from 35 million USD originally projected – 60 million in FY 2009 USD - to 250 million USD, or 412% of initial estimated cost. One of causes are misrepresentations of costs – as John Hamre, Pentagon controller from 1993 to 1997 said, military-industrial complex knew that plane would cost more than projected, but costs were misrepresented at Capitol Hill in order to secure the project. Policy of cost misrepresentations is still in effect – more about it below.
Another telling fact is that, between 2001 and 2005, 16 out of 17 major weapons systems did not meet required specifications – not one was stopped, or delayed in production, as result.
US, with its permanent war economy, is basically a militarized state capitalism..
One part of it is administrative staff. French designed and built the Mirage III with a total engineering staff of fifty design draftsmen. The Air Force’s F-15 Program Office alone had a staff of over 240, just to monitor the people doing the work.
As a result, US budget is larger than that of rest of the world combined. Over 27 000 military contractors are evading taxes and still continue to win new business from Pentagon, owing an estimated 3 billion USD at end of 2002 fiscal year. It is made worse by fact that only things that limit cost increases are external – US Congress, Government and taxpayers. Current US military spending per year is, as seen above, around 1 trillion USD.
During 2002, Boeing had received $19.6 billion in government contracts. In support of such results, the Boeing management spent $3.8 million for lobbying of various sorts and made campaign contributions to members of Congress amounting to $1.7 million.
Military itself is penalized by receiving unreliable equipment that is too complex, requiring hard-to-find skilled maintenance talent, and prone to malfunction. In 2010, there have been claims that Chinese shot down F22 with a laser; most likely in order to fund more research into exotic weapons (YF-1984?). Another possibility is that US is also pressurizing China into revaluing its currency, or simple propaganda as a goal of racheting up Chinese fear factor, as it was doing in last decade or so. Reason it became popular is due to all the hype F22 received.
Moreover, US wants to sell F22 to other coutries, and does it with other weapons systems – effect it creates is that US is in constant arms race with itself. Meanwhile, money expended on hardware means that US pilots' training is suffering.
One of main problems with US weapons manufacturers is that these corporations cannot convert to civilian production (as William Anders, General Dynamics' CEO said in 1991 - "… most [weapons manufacturers] don't bring a competitive advantage to non-defense business," and "Frankly, sword makers don't make good and affordable plowshares."), and are constantly and consistently eating away scarce resources that still remain avaliable to other sectors. Two relatively small wars in Iraq and Afghanistan had put a cosiderable pressure on US military budget, even more than Vietnam war, while Military-industrial-Congressional complex grows in power and influence – exactly what President Eisenhower warned against in his farawell adress.
Cold War itself served as an excuse to keep money flowing into MICC. By 1991, it was so well established that shutting it down became nigh impossible; still, it began creating a series of wars and false dangers - Somalia, Bosnia, Kosovo, the first and second Gulf wars, Afghanistan, Yemen, Pakistan, the war on terror, etc. - to justify its continuing survival (going by some analyses, it is entirely probable that even 2001 attacks were orchestrated by elements inside US to justify a continuing stream of wars and ever-increasing defense budget, as well as reductions in personal freedoms. Even if that is not the case, however, attacks were still masterfully exploited in pushing for those goals).
It also should be noted that unit number reductions, contrary to what DoD apologetics say, are not a cause of a growing costs in either F22 or F35 – or most other US programs. Rather, they are a symptom, just like F22 itself is just a symptom of broblems in modern-day US – and, generally, Western – society; namely, that money and technology can solve any problem, and that people should not stay in way of profit.
F22 costsF22 is, as it is obvious to everyone who knows something about it, very costly airplane to both produce and use. But, what are real numbers?
F22 is perhaps more famous for its perpetual increase in costs than for its hyped abilities. There are many resons for such increase, such as false cost estimates made by Lockheed Martin, reduced orders and problems with aircraft itself. Official numbers are 150 million USD as a flyaway cost, and 350 million USD as unit procurement cost. However, these numbers are outdated.
Unit and modernization costsIn 2011, one F22 had a flyaway cost of 250 million USD and unit procurement cost of 411 million USD. Later, unit program cost has increased to 412 million USD per plane. In first half of 2012, it was 422 million USD per aircraft.
Developmental costs have increased due to many patch-ups (such as structural strenghtening of rear fuselage) and fixes. As for flyaway cost, full half of it goes on stealth coating – generally, it takes 30 minutes to make sure that single rivet is installed in accordance to stealth requirements – and just F22s fuselage midsection has around 60 000 rivets – and most of them are either exposed to radar, or in hard-to-get locations. Moreover, aircraft are not produced anymore – they are built, individually, like in a locomotive factory. (In World War 2, United States tanks were produced, on assembly line, like cars. German tanks were built in aforementioned fashion, which increased complexity of process, greatly reducing factories' output).
Discrepancy between official and real costs are logical, considering that all DoD cost estimates are based on Lockheed Martin's internal documentation – cost control is utterly nonexistent.
F22s electronics components are not federated – they are designed to work only with another component of same design, thus any electronics upgrade would see replacement of entire electronics system. Computer chips are already outdated – F22 uses 32 bit 25 MHz chips, that are outdated even by civilian market.
Maintenance and operating costsF22 is supposed to replace F15 fleet, but operating costs of brand-new F22s are already greater than F15s - namely, F22's operating cost was 61 000 USD per hour in 2010 and 105 000 USD per hour in 2011; compare that with operating cost 30 000 USD per hour for F15C, and F22s own 44 000 USD per hour operating cost in 2009.
When we compare that to promises of Lockheed Martin about F22s lower operating costs when compared to F15, it becomes obvious, not only that Lockheed Martin cannot be trusted (that much already is obvious) but that military-industrial complex desperately wants to protect Cold War status quo, which allows them to get richer – by downplaying future consequences of current decisions, they can continue loading defense budget with even more costly and complex weapons.
ProblemsHere, I will not put cost of most fixes until now – beacouse I don't know it – but rather a list of technical problems F22 has encountered so far (some may have been fixed in meantime):
- leaky fuselage access panels, leading to corrosion problems
-- four largest aluminium panels replaced by titanium ones; each titanium panel costs at least 50 000 USD
- bad quality control
-- fatigue problems
--- aft boom
---- fixed by reinforcing it
-- structural quality problems
--- titanium booms connecting wings have structural failures that could result in loss of airplane; problem "solved" by increasing inspections over the life of the fleet, with expenses mostly paid by Air Force
-- 30 F22s were badly glued
-- defective VLO coating
--- Lockheed knowingly used defective coatings
-- cracks in airframe
--- small parts require frequent reglueing – and glue can take more than a day to dry
-- problems with life support systems
--- oxygen problems limited planes to maximum altitude of 7 600 meters, as opposed to official maximum altitude of 19 800 meters
--- in 2011, OBOGS failure meant that pilots were breathing a mixture of oxygen, anti-freeze, oil fumes and propane, and F22 fleet was grounded.
--- 2012 OBOGS problems apparently caused by OBOGS sucking evaporating steath coating along with air – many simptoms that both pilots and ground staff displayed are typical of neurotoxins
All of that, especially given large number of potentially safety-threatening problems, points towards conclusion that F22 was approved for production before it was ready for it, much like later F35. So far, three F22s have been lost – two in accidents, one due to faulty life support systems – leaving United States with 185 aircraft.
Strategical analysisEffects of numbersEffects of numbers are various. First, fewer planes means that these same planes have to do more tasks and fly more often, therefore accumulating flight ours faster and reaching designed structural life limit faster. Also, smaller force will attrite faster; more flight hours per plane will mean less time avaliable for proper maintenance as well as greater wear and tear put on planes, further reducing already limited numbers.
In combat, side capable of putting and sustaining greater number of planes in the air will be able to put a larger sustained pressure on the enemy. Until advent of F16 and F18, USAF and USN were constantly worried about being outnumbered – for a good reason. Yet, small numbers of F22 are now, somehow, desireable.
F22, even assuming all promises made by USAF and Lockheed Martin are actually true, will not have numbers to make impact. In that, it is similar to Me262 Sturmvogel, German jet fighter from World War 2. Like F22, it was designed as a technological wonder; and unlike F22, it actually used technology that was not used in any other fighter plane before it. Yet, it was defeated by superior numbers of Allied technologically inferior fighter planes. While it did cause some alarm, its ultimate effect on course of war was negligible.
F22s shortcomings – force size and qualityTo stop aging of its fighter inventory, USAF should have had acquired 2500 fighter planes between 1998 and 2013. In contrast, only 187 F22s were produced, and even fewer F35s. Only low cost option is to restart production of F16 – for one F22, one can get four F16s; seven, if we go with F22s unit procurement cost.
Acquiring only 180 aircraft means that USAF will use 80 planes for training and home defense, 50 for European and 50 for Pacific theater. When these numbers are combined with low maintenance readiness, owing due to its complexity and stealth coating, it will reduce F22s operational avaliability and strategic impact to insignificance - in 2009, its avaliability was 55 – 60 %. It also had serious maintenance problems, such as corrosion. It could also fly on average 1,7 hours between critical (mission-endangering) failures, and from 2004 to 2008, its maintenance time per hour of flight increased from 20 to 34 hours, with stealth skin repairs accounting for more than half the maintenance time. In 2009, number was 30 hours of maintenance per hour of flight, while in 2011, F22 required 45 hours of maintenance for every hour in the air. As is obvious from this, and "Maintenance and operating costs" section, all F22s maintenance trends have been negative for years.
Moreover, only 130 of these planes are combat-coded.
187 F22s in inventory can, at best, generate 60 combat sorties per day, which is pathetic number against any serious enemy – whereas F16s bought for same cost would generate 1000 combat sorties per day, F22s presence likely will not even be noticed in strategic sense. Number of sorties will also become even lower as combat attrition and increased maintenance take its tool. There is also fact that per-unit maintenance costs for new F22s are, as seen previously, far larger than those for 30-year-old F15s, and will increase as time passes.
Also, while simulators may be good for cockpit procedures training, they misrepresent reality of air combat; as such, F22s unreliability also harms pilots training.
(Note: Out of 187 F22s that have entered active service, 3 have crashed, bringing number down to 184. It is still not large enough change to cause major effect numbers noted above. It is unknown to me wether all of crashed F22s were combat-coded)
Effects of trainingAs US commander in Gulf War said: "Had we exchanged our planes with the enemy, result would have been the same". Even best hardware on planet will not help if pilots are undertrained – and F22 pilots are on way to become that, due to F22s high maintenance requirements. When Israeli Air Force swept Syrian MiGs from sky in invasion of Lebanon in 1982 with exchange ratio of 82-0, Israeli Chief of Staff made same comment.
Between 1970 and 1980, instructors at Navy Fighter Weapons School, who got 40 to 60 hours of air combat manouvering per month, used F5s to whip students, who got only 14 to 20 hours per month, in their "more capable" F4s, F14s and F15s. US pilots in Vietnam complained that 20 – 25 hours of training per month is inadequate. Currenly, F22 pilots get only 12 to 14 hours of flight training per month.
Israeli pilots in 1960s and 70s got 40 to 50 hours of flight training per month. US Congress, meanwhile, cut 400 million USD from pilot training in 2008, to help pay for F22s.
F22 shortcomings – otherOne of shortcomings of F22 is very simple – it requires large, very visible runaways in order to even get into air. Not only such runaways will be prime target – and hardened shelters aren't protection against new weapons, while concrete runaway can be easily disabled for a relatively long span of time – they are also in danger of "goal tending" – enemy aircraft, with larger fuel fraction and lower wing loading, can simply go ahead of returning F22 force and shoot them down while F22s are trying to land. And with low numbers of F22s, this danger is very real. In short, if air defenses of base are disabled or destroyed, a pair of biplanes with air to air missiles could hover near base and not let anyone take off.
Also, hardened shelters USAF uses can be penetrated by modern munitions designed specifically for that use.
In World War 2, last major war United States have fought, such airfield vandalism was always a danger – even when US had air superiority. So, how US solved it? It didn't – it simply produced airplanes at faster rate than enemy could destroy them – one airplane per hour. F22s complex design, aside from making it very difficult to produce and maintain, also makes it very vulnerable. What on legacy fighters would be counted as cosmetic damage, can force costly repairs on F22 – stealth skin is prime offender.
Also, unlike most other aircraft, F22 is not designed to be upgraded over time. It might get new versions of old electronics, but nothing new – such as IRST, which it badly needs. As F22 is designed to rely on technology to overcome enemy, and not on airframe performance as F16 was, such lack of upgradeability will be especially painful.
Tactical analysisBVR combatSince development of first BVR weapons, each new generation of fighters would make someone declare that "dogfighting is a thing of past". Invariably, they have been wrong. In 1960, F4 Phantom was designed without gun – and then Vietnam happened.
US went into Vietnam relying on a AIM-7 Sparrow radar-guided missile. Pre-war estimated Pk was 0,7 – Pk demonstrated in Vietnam was 0,08. Current AIM-120 has demonstrated Pk of 0,59 in combat do this date, with 17 missiles fired for 10 kills. However, that is misguiding.
Since advent of BVR missile until 2008, 588 air-to-air kills were claimed by BVR-equipped forces. 24 of these kills were by BVR missile. Before "AMRAAM era", four out of 527 kills were by BVR missile. Since 1991, 20 out of 61 kills may have been done by BVR missile, while US itself has recorded ten AIM-120 kills. However, four were NOT from beyond visual range; Iraqi MiGs were fleeing and non-manouvering, Serb J-21 had no radar, as was the case with Army UH-60 (no radar, did not expect attack), while Serb Mig-29's radars were inoperative; there was no ECM use by any victim, no victim had comparable BVR weapon, and fights involved numerical parity or US numerical superiority – in short, BVR missile Pk was 50% against “soft” (non maneuvering with no ECM or sensors) targets. Also, 16 BVR missile kills in Desert Storm are far from sure – it says that “sixteen involved missiles that ‘were fired’ BVR”, meaning that these could have WVR kills prefaced with BVR shots that missed. Five BVR victories are confirmed, however - one at 16 nm (and at night), one at 8.5 nm (night) and three at 13 nm, which more than doubles number of BVR victories.
In Vietnam, Pk was 28% for gun, 15% for Sidewinder, 11% for Falcon, 8% for Sparrow, and essentially zero for Phoenix. Cost of expendables per kill was few hundred dollars for gun, 15 000 USD for Sidewinder, 90 000 USD for Falcon, 500 000 USD for Sparrow, and several millions for Phoenix – costs here are given in 1970 dollars. Overall cost for destroying enemy with BVR missiles – including training, and required ground support – has never been computed.
AMRAAM itself costs 500 000 USD per missile, and USAF was forced stop buyng Sidewinders in order to afford AMRAAMs. In fact, towards end of UN military intervention in Bosnia, US military started to report shortages of BVR missiles required to equip its fighters.
In Cold War era conflicts involving BVR missiles – Vietnam, Yom Kipuur, Bekaa Valley – 144 (27%) of kills were guns, 308 (58%) heat-seeking missiles, and 73 (14%) radar-guided missiles. Vast majority of radar-guided missile kills (69 out of 73, or 95%) were initiated and scored within visual range. In true BVR shots, only four out of 61 were successful, for a Pk of 6,6 %, and all four were carefully staged outside of large engagements in order to prove BVR theory (two were in Vietnam, and two by Israeli Air Force after US pressured Israel into establishing BVR doctrine).
In Desert Storm itself, F15s Pk for Sidewinders was 67% as compared to Pk for BVR Sparrow of 34%. However, Iraqi planes did not take evasive actions or use ECM, while there was persistent AWACS avaliability on Coalition part – none of which can be counted at in any serious war.
Post-Desert Storm, there were 6 BVR shots fired by US during operation Southern Watch – all missed. As recently as Operation Iraqi Freedom, Allied aircraft were lost to friendly fire, despite usage of IFF systems, AWACS, NCTR and relatively orderly war.
There are other examples of radar missile engagements being unreliable: USS Vincennes shot down what it thought was attacking enemy fighter, and downed Iranian airliner, while two F14s fired twice at intruding Lybian fighters, missing them at BVR with radar-guided Sparrows and shooting them down in visual range with a Sparrow and Sidewinder.
BVR combat cannot – for obvious reason – fulfill critical requirement of visual identification. IFF is unreliable – it can be copied by the enemy, and can be tracked; meaning that forces usually shut it down. As such, fighter planes have to close to visual range to visually identify target. Moreover, presence of anti-air anti-radiation missiles, such as Russian R-27P, was shown to be able to force everyone to turn off radars – possibly including AWACS. Radar signal itself can be detected at far greater range than radar can detect target at – even when it is LPI – meaning that enemy has ample time to use countermeasures and/or maneuver away from incoming missile. Uplinks to AWACS can be jammed, and if AWACS is shot down/scared away, it means that some F22s, with far weaker uplinks, will have to act as spotters for other F22s.
While modern IRST can identify aircraft by using its silhouette, range for such identification is low (~40 km for PIRATE).
WVR combat
In Desert Storm, US forces fired 48 WVR missiles, achieving 11 kills, for Pk of 0,23. However, historically, Pk for IR missiles was 0,15, and 0,308 for cannon. While F16s fired 36 Sidewinders and scored zero kills, at least 20 of launches were accidental, due to bad joystick ergonomy, which was later modified.
While missiles have become more reliable, countermeasures have advanced too; as such, while IR missiles may be aircraft’s main weapon, gun kill remains most reliable way of getting rid of enemy.
Effects of numbersIn WVR, numbers are usually decisive. Thus, F22 relies on a (flawed, as shown above) concept of decisive BVR engagement to compensate for larger numbers of enemy fighter planes it can be expected to engage.
However, even in BVR, numbers do matter. Lanchester square criteria, which holds that qualitative advantage of outnumbered force has to be square of outnumbering force's numerical advantage, is even more applicable for BVR combat than for WVR, due to lack of space constrains. Thus, due to Su-27s costing 30 million USD, as opposed to F22s 250 million, F22s would have to enjoy 70:1 qualitative advantage just to break even – which is extremely unlikely. Historically, 3:1 was usually a limit of when quality could no longer compensate for enemy's quantitative advantage, in both BVR and WVR.
Superior numbers also saturate enemy with targets, and cause confusion. USAF itself has always depended on superior numbers to win air war.
In short, F22 supporters have to learn to count.
F22s shortcomings in air combatFor beginning, four major characteristics were not met – one, 26 per cent increase in weight has led to wing loading and thrust-to-weight ratio slightly inferior to those of F15C; meaning that, for reasons of physics, there was no increase in manouverability – from outstanding, F22s manouverability was reduced to ordinary, except when it comes to air show tricks, that invariably bleed off energy. Weight increase also led to decrease in fuel fraction, from 0.36 to 0.28, which is too low even for a supercruise fighter – fuel fractions of 0.28 and below yield subcruisers, 0.33 provides quasi-supercruiser and 0.35 and above gives combat-useful supercruise performance. Simply put, supercruise characteristic has failed – 50 year old F104 can match F22s supercruise radius, and F15C, to which F22s supercruise rainge is usually compared, is one of worst fighters in terms of supercruise range. This means that F22 has to rely on subsonic cruise in combat – and that despite the fact it was designed for supersonic cruise, therefore worsening its already bad aerodynamical performance. Stealth itself was not achieved because F22 is, due to its size, is very visible in visual, infrared and acoustic spectrum, and its radar can be sensed by advanced RWRs, as demonstrated by Eurofighter Typhoons at China Lake – or by anti-radiation missiles, which Russians have, and aren't afraid to sell them. With regards to visual detection, F22 is some 25 to 30 per cent larger than F15, and can be detected visually from order of 10 miles, or 16 kilometers head on, or 25-35 nm (46 to 65 km) from side. Avionics system itself is outdated. Moreover, when cruising supersonically, loud sonic boom betrays its location.
Also, to fully exploit its stealth advantages, F22 has to remain passive, even with its LPI radar; due to its lack of IRST or other passive sensors (with exception of RWR, which only work if enemy uses radar), it is limited to being fed data by friendly aircraft, usually AWACS (while other fighters may do it, it is questionable they will be able to penetrate jamming). Such planes can be shot down, effectively forcing F22 to choose between radiating in EM spectrum or fighting blind when compared to IRST-equipped fighters. Moreover, stealthy aircraft are only stealthy at night, whereas air superiority is primarly daylight mission – and F22s large size means that it will be spotted first. Large size is partly because of requirements for radar stealth – shapes required for achieveing radar VLO are very volume-ineffective. It is also very visible to sensors not based on active radio emissions, such as IRST.
F22 is also supposed to fight at high altitudes, around 20 000 meters. At such altitudes, both IRST, IR missiles' seekers and missiles themselves will have greatly increased range.
F22s shortcomings in WVR combatIn WVR combat, F22 is pretty much very observable fighter – it is very large, which does not serve purpose of stealth. As noted above, its manouverability is comparable to that of F15C, and usage of gun doors and weapons bays increase response time, making snapshots within brief optimal "windows" a wishful thinking. While it is superior to F15E and F35, it is inferior in manouverability to F15A and F16A, and is inferior in physical size to all current US fighters; as TopGun saying goes: "Largest target in the sky is always first one to die" – a fact proven by actual combat: most planes were shot down unaware, from the rear.
That fact has been proven in exercises – whenever "Red" aircraft entered visual range, F22 invariably died (so far, list of F22 WVR "killers" contains F16, F18. Eurofighter Typhoon and Dassault Rafale). Even thought in one such instance, F22 managed to "destroy" three F16s out of four, fight in question started in BVR; when last F16 got to WVR, F22 died – fact that it is the largest fighter in US inventory certainly helped.
Also, missiles have minimum weapons engagement zone; usually around a mile or little less, as missile's warhead takes time to arm, and depending on missile's g-capacity (AIM-9B has minimum range of 930 meters when fired from straight behind at sea level at Mach 0,

. Thus, gun is often only remaining option – option which, in F22s case, is unsatisfactory, due to usage of Gattling design in combination with gun doors; both of that mean that F22 is unable to perform crucial split-of-second shots, due to combination of gun spin-up time and requiring doors to open increase time between press on a trigger and first bullet leaving barrel to around a second – whereas, to score a kill and survive during mass dogfight, pilots would have to launch missiles quickly at multiple targets and then leave – tactic appropriately called "launch and leave".
While missiles can perform 30-g manouvers, they move far faster than fighters, which means both increased turn diameter as well as increasing possibility of missile to miss target for no clear reason, even when target is not manouvering or using ECM. This, combined with probability of fighter simply running out of missiles – which is, with F22s low numbers, very likely - means that gun combat is far from outdated; and in it, F22 is handicapped.
Thrust vectoring itself is mostly useless for aerodynamically well-designed aircraft – which F22 is not, due to heavy tradeoffs required for stealth – in majority of combat scenarios. While thrust vectoring improves maneuverability in certain flight regimes – namely, it enables post-stall maneuvers, and improves maneuverability at a) very high speeds and very high altitudes (>12 000 meters), where air is too thin for classic control surfaces to be utilized efficiently (which is main reason for TVC in F22 and Eurofighter Typhoon, as they are designed primarly as high-speed, high-altitude BVR interceptors; furthermore, at supersonic speeds, aircraft becomes statically stable), and b) very low speeds (under 150 knots) and very low altitudes, where ait flow over control surfaces is not fast enough. These particular regimes of flight are either mostly useless (extreme altitude) or outright dangerous (low speed, post stall) in majority of combat scenarios – at low speed, aircraft is defensless against competent opponent, and its life span can be measured in seconds, while only a small part of air combat happens at high altitudes and speeds, given unreliability of IFF in combat. Moreover, extreme energy loss caused by use of thrust vectoring can leave even aircraft that has started from good energy state vulnerable to enemy missiles and gunfire after some time. In other flight regimes, TVC-equipped aircraft are no more maneuverable than traditional aircraft – or even less, in case of various canard configurations. Specifically, using TVC means that aircraft continues to fly in one direction while nose points in completely another, with tremendous loss of energy; and to turn, aircraft still requires excess lift from wings in order to pull it around. Moreover, it takes time for aircraft to start executing a turn, during which aircraft itself rotates, rear end of aircraft drops and aircraft itself sinks – a perfect opportunity for a gun shot. While it can be useful in one-on-one gunfights (which are generally carried out at low speeds, where TVC does improve maneuverability for a time, until loss of energy becomes too great) if pilot knows how to use it, it is far from perfect (it should be noted that even despite that, Rafale managed to have one win and 5 draws against F22 in exactly such situation).
While post-stall maneuvers look cool at exercises, they are dangerous in real combat as they leave plane vulnerable to enemy due to lack of energy required to evade missiles; therefore, only useful things that TVC adds are safety, by providing two more control surfaces; and engine efficiency, by allowing aircraft to position itself better relative to air flow, thus improving range and decreasing fuel usage – very important in peace time. F22, having 2D and not 3D TVC nozzles, may be lacking in former when compared to 3D TVC-equipped aircraft – although, as F15 has proven, loss of one engine doesn't require TVC for compensation. TVC can also be used as a propaganda/marketing trick, to fool the gullible.
In short, thrust vectoring is dangerous for plane using it if pilot doesn't know how to use it (requires lot of training) and does not entirely compensate for airplane's size and weight – so you can forget the prospect of F22 outmaneuvering, say, Eurofighter Typhoon or Dassault Rafale, at any combat-useful speed. To turn at combat speed, aircraft still requires lift from wing – that is, low wing loading.
According to some sources, F-22 has sustained turn rate of 28 degrees, while other sources put it at 23-24 degrees per second. In all likelyhood, 28 degree per second turn rate is instantaneous one, and latter figures are sustained turn rate; both with use of thrust vectoring (Typhoon has instanteneous turn rate of over 30 degrees per second, and sustained turn rate of 23 degrees per second, and Rafale has instaneteneous turn rate of over 30 degrees per second, and sustained turn rate of 24 degrees per second).
F22s shortcomings in BVR combatFirst, short supercruise range due to small fuel fraction does not allow F22 to pursue enemy or reliably avoid being jumped and/or pusued itself. While F22s supercruise range is superior to F15C, which is easily the worst supercruiser in USAF, it will be inferior to aircraft with higher fuel fraction, better aerodynamics (Eurofighter Typhoon) or both (Dassault Rafale).
Second, it is not stealthy at all. Stealth is measured against five signatures – infrared, sound, visual, and radar footprint as well as electronic emissions. Visual, by definition, is not important for BVR combat; but sound and infrared signature are impossible to lower enough for plane to be VLO, especially when supersonic. While it is not a shortcoming by itself, legacy fighters not even making any effort to lower it, it becomes one when coupled by its low numbers and maximum of six BVR missiles carried in VLO configuration – essentially necessitating use of 2 F22s to kill a single target. And even if it was, it is not equipped with IRST (although it can be mounted), thus necessitating F22 to emit signals – radar (it is equipped with both UHF and VHF radar antennas, in addition to normal engagement radar) plus IFF or (jammable) uplink to another plane (with IFF) – to detect enemy, which defeats entire purpose of stealth, and allows enemy anti-radiation missiles to home in on F22s powerful radar.
That problem is worsened by the fact that all US fighters emit in area of 10 000 Mhz in order to get all-weather capability – meaning that enemy only has not to emit in that area in order to solve IFF problem. In combat, enemy equipped with ARMs can force everyone to shut down radars, returning combat squarely into visual range.
Meanwhile, US did make effort to develop ARM in 1969, but it was cancelled due to possibility of it threatening radar missile development as well as F15 and F14 programs. French are also selling advanced ARMs all over the Third World, meaning that US might find itself in a trouble in next war.
Moreover, as soon as F22 manouvers, it is going to blow its – already limited – radar stealth. It is only VLO within 20 degrees off the nose, and its reported radar signatures only take frontal aspect versus high-frequency radars into consideration.
In IR spectrum, F22 simply cannot hide, especially when supercruising – fighter moving at supersonic speeds generates shock cones of hot air; a feature impossible to hide to IRST.
It also seems (3) that AMRAAM does not even work in cold environment – exactly where F22 is supposed to carry out its interception missions. Also, at ranges stealth is effective at, BVR missiles have already expended fuel and have extremely low Pk.
To make matters worse, EW countermeasure suite can be as effective as stealth in BVR, as demonstrated when EF-18 “Growler” defeated F22 in one-on-one BVR engagement, and when IAF MiG-21 equipped with jamming equipment managed to get to merge with F-15 in exercises.
While datalinks are touted as allowing one F22 to do the targeting and another to launch BVR missile, mid-flight update can only be done by platform that launched the missile – a safety measure preventing enemy from hacking into uplink and sending missile back to fighter that launched it.